Friday, 23 August 2019

TRIGONOMETRICAL IDENTITIES - PART – 100

134. sin A cos A – 
[sin A cos (  – A) cos A / sec (  – A)] - 
[cos A sin (  – A) sin A / cosec (  – A)] = 0

TRIGONOMETRICAL IDENTITIES - PART – 99

133. cosec Ꝋ - sin Ꝋ = m, sec Ꝋ - cos Ꝋ = n
Show that (m2n)2/3 + (mn2)2/3 = 1

TRIGONOMETRICAL IDENTITIES - PART – 98

132. Prove that :
sin A / sin (90 – A) + cos / cos (90 – A)
=
sec A cosec A

TRIGONOMETRICAL IDENTITIES - PART – 97

131. Solve for x, 0 ≤ x ≤ 90
(i) 3 tan2 2x = 1
(ii) tan2 x = 3 (sec x – 1)

TRIGONOMETRICAL IDENTITIES - PART – 96

130. Solve for x, 0 ≤ x ≤ 90
(i) 4 cos22x – 3  = 0
(ii) 2 sin2x – sin x  = 0

Thursday, 22 August 2019

TRIGONOMETRICAL IDENTITIES - PART – 95

129. If cos A = 9/ 41; find the value of
(1 / sin2 A) –  (1 / tan2 A)


TRIGONOMETRICAL IDENTITIES - PART – 94

128. If (2 cos 2 A – 1) (tan 3 A – 1) = 0; find the  values of A.   

TRIGONOMETRICAL IDENTITIES - PART – 93

127. If tan A = 1 and tan B = √3; evaluate
(i) cos A cos B – sin A sin B
(ii) sin A cos B + cos A sin B

TRIGONOMETRICAL IDENTITIES - PART – 92

126. Find   ; find A, if :
(i) sin A / (sec A – 1) + sin A / (sec A – 1) = 2      

TRIGONOMETRICAL IDENTITIES - PART – 91

125. Find   ; find A, if :
(i) cos A / (1 – sin A) + cos A / (1 + sin A) = 4

Friday, 2 August 2019

TRIGONOMETRICAL IDENTITIES - PART – 90

Find A, if A is less than zero and A is less than 90 degrees.
(1) cos2 A – cos A = 0
(2) 2 cos2 A + cos A – 1 = 0

TRIGONOMETRICAL IDENTITIES - PART – 89

Find A, if A is less then are equal to zero and A is greater than are equal to zero.
(1) 2 cos2 A – 1 = 0 , (2) sin 3 A – 1 = 0 and 
(3) 4 sin2 A – 3 = 0