Friday, 23 August 2019
TRIGONOMETRICAL IDENTITIES - PART – 100
134. sin A cos A –
[sin A cos (
– A) cos A / sec (
– A)] -
[cos A sin (
– A) sin A / cosec (
– A)] = 0
TRIGONOMETRICAL IDENTITIES - PART – 99
133. cosec Ꝋ - sin Ꝋ = m, sec Ꝋ - cos Ꝋ = n
Show that (m
2
n)
2/3
+ (mn
2
)
2/3
= 1
TRIGONOMETRICAL IDENTITIES - PART – 98
132. Prove that :
sin A / sin (90 – A) + cos / cos (90 – A)
=
sec A cosec A
TRIGONOMETRICAL IDENTITIES - PART – 97
131. Solve for x, 0 ≤ x ≤ 90
ﹾ
(i) 3 tan
2
2x = 1
(ii) tan
2
x = 3 (sec x – 1)
TRIGONOMETRICAL IDENTITIES - PART – 96
130. Solve for x, 0 ≤ x ≤ 90
ﹾ
(i) 4 cos
2
2x – 3
= 0
(ii) 2 sin
2
x – sin x
= 0
Thursday, 22 August 2019
TRIGONOMETRICAL IDENTITIES - PART – 95
129. If cos A = 9/ 41; find the value of
(1 / sin
2
A) – (1 / tan
2
A)
TRIGONOMETRICAL IDENTITIES - PART – 94
128. If (2 cos 2 A – 1) (tan 3 A – 1) = 0; find the values of A.
TRIGONOMETRICAL IDENTITIES - PART – 93
127. If tan A = 1 and tan B = √3;
evaluate
(i) cos A cos B – sin A sin B
(ii) sin A cos B + cos A sin B
TRIGONOMETRICAL IDENTITIES - PART – 92
126. Find
; find A, if :
(i) sin A / (sec A – 1) + sin A / (sec A – 1) = 2
TRIGONOMETRICAL IDENTITIES - PART – 91
125. Find
; find A, if :
(i) cos A / (1 – sin A) + cos A / (1 + sin A) = 4
Friday, 2 August 2019
TRIGONOMETRICAL IDENTITIES - PART – 90
Find A, if A is less than zero and A is less than 90 degrees.
(1) cos
2
A – cos A = 0
(2) 2 cos
2
A + cos A – 1 = 0
TRIGONOMETRICAL IDENTITIES - PART – 89
Find A, if A is less then are equal to zero and A is greater than are equal to zero.
(1) 2 cos
2
A – 1 = 0 ,
(2) sin 3 A – 1 = 0 and
(3) 4 sin
2
A – 3 = 0
Newer Posts
Older Posts
Home
Subscribe to:
Posts (Atom)